

Presenter: *Corinne Bachmann and Josh White LBNL and LLNL

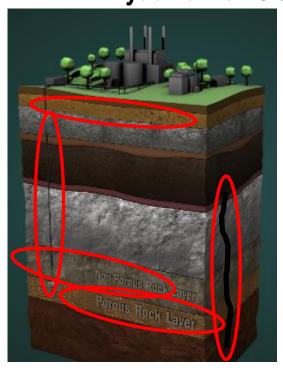
NRAP Tool Webinar Series

Webinar 7

Short term seismic forecasting tool -STSF Monday November 30, 2015

OVERVIEW

- Welcome and Overview of NRAP Technical Approach and Tool Development
- Introduction to the NRAP Short Term Seismic Forecasting Tool (STSF)
- What does STSF do?
- What is the Empirical Type AfterShock (ETAS) model?
- How to run to the STSF tool
 - What input is needed
 - What output is created
- Questions and Open Discussion

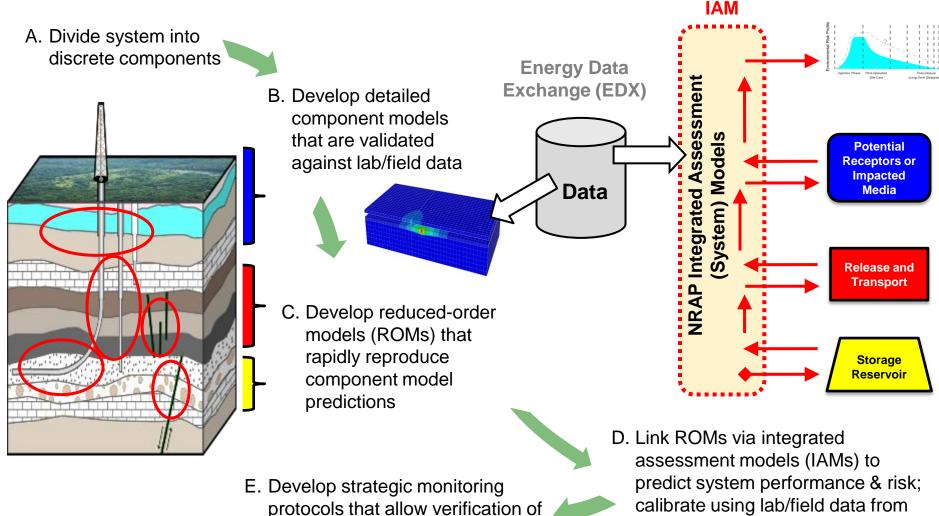


National Risk Assessment Partnership (NRAP)

NRAP leverages DOE's capabilities to help quantify uncertainties and risks necessary to remove barriers to full-scale CO₂ storage deployment.

Objective: Building toolset and improving the science base to address key questions about potential impacts related to release of CO₂ or brine from the storage reservoir, and potential ground-motion impacts due to injection of CO₂

Stakeholder Group

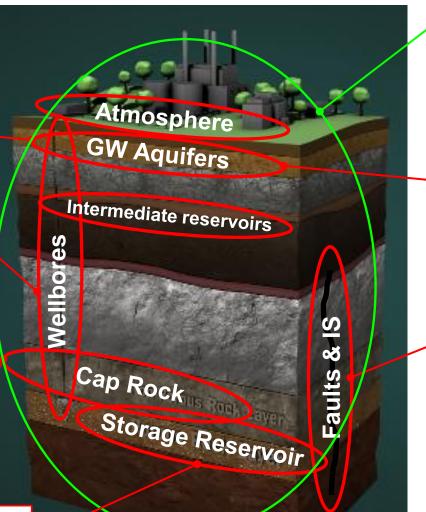


NRAP's approach to quantifying performance relies on reduced-order models to probe uncertainty in the system.

predicted system performance

NRAP and other sources

NRAP Tools


Now available for beta testing

Design for Risk Evaluation and Monitoring

Wellbore Leakage **Analysis Tool**

> **Natural Seal ROM**

Reservoir Evaluation and Visualization

NRAP-IAM-CS

Aquifer Impact Model

Short Term Seismic Forecasting

<u>www.edx.netl.doe.gov/nrap</u> → TOOL BETA TESTING link

(5)

Schedule for NRAP Tool Webinar Series

Date/ Time	Tool	Presenter(s)
October 13 Time: 1pm ET	Integrated Assessment Model–Carbon Storage (NRAP-IAM-CS) (2.5 hours)	Rajesh Pawar
October 19 Time: 1pm ET	Natural Seal ROM (NSealR) (1 hour)	Nicolas Huerta, Ernest Lindner
October 26 Time: 1pm ET	Reservoir Evaluation and Visualization (REV) Tool (1 hour)	Seth King
November 2 Time: 1pm ET	Wellbore Leakage Analysis Tool (WLAT) (1.5 hour)	Nicholas Huerta
November 9 Time: 1pm ET	Aquifer Impact Model (AIM) (1.5 hour)	Diana Bacon
November 16 Time: 1pm ET	Design for Risk Evaluation and Monitoring (DREAM) (1 hour)	Catherine Ruprecht Yonkofski
November 30 Time: 1pm ET	Short Term Seismic Forecasting (STSF) (1 hour)	Josh White, Corinne Bachmann
December 7 Time: 1pm ET	Integrated Assessment Model–Carbon Storage (NRAP-IAM-CS) and REV Tool (1.5 hours)	Rajesh Pawar, Seth King

Check for updates at www.edx.netl.doe.gov/nrap

What does STSF do?

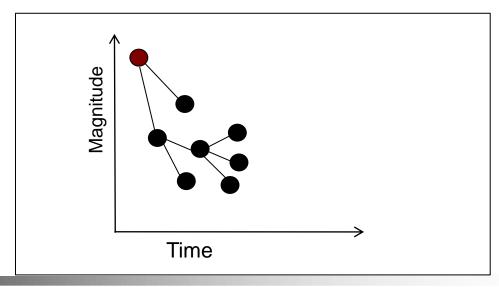
Problem statement:

We have ongoing seismicity during an injection and we want to model the behavior of the events.

Solution:

The STSF tools uses a model developed for the decay of aftershocks of large seismic events to determine the event rate in future time bins. It also fits the injection parameters of the ongoing project

- Uses the ETAS model
- Can use different injection parameters as input
- Predicts event rates above a pre-determined magnitude threshold
- Can be used in real-time in an ongoing project



Epidemic Type Aftershock Sequence Model (ETAS)

- Originally developed by Ogata in 1988 to determine the occurrence of aftershock after a main shock / large event.
 - Each earthquake has the ability to trigger aftershocks
 - ETAS is a cascading model

Epidemic Type Aftershock Sequence Model (ETAS)

 Originally developed by Ogata in 1988 to determine the occurrence of aftershock after a main shock / large event.

$$\lambda_i(t) = \frac{K}{(c+t-t_i)^p} 10^{\alpha(M_i-M_{\min})}$$

$$\lambda(t) = \lambda_0 + \sum_{[i:t < t_i]} \lambda_i(t)$$
 Background Term

Epidemic Type Aftershock Sequence Model (ETAS)

 To adapt for injection induced seismicity, a term is added into the background:

$$\lambda(t) = \lambda_0 + \sum_{[i:t < t_i]} \lambda_i(t)$$

 Fr(t) is originally the injection rate, but this can be adapted, cf is a fitted constant

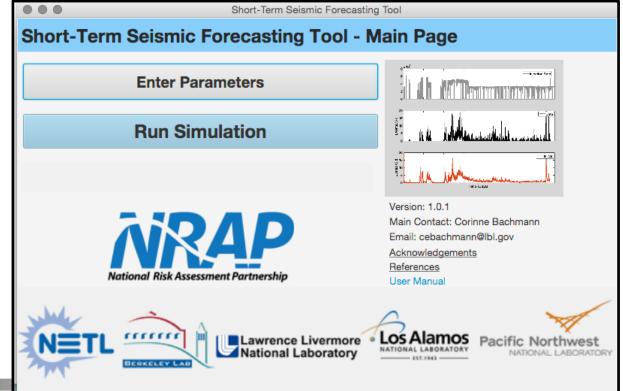
$$\lambda_0(t) = \mu + c_f \times F_r(t)$$

ETAS Code

- There are several adaptions of the ETAS frame set
 - We use a code written by Prof. S. Hainzl at GFZ Potsdam
- All codes are written in C++ and originally called by a Perl script
- Matric Research has turned the Perl Script into a GUI

How to install the STSF Tool

- The tool package is a zip file on EDX
 - Unpacking the zip file creates a folder with all files needed
- Currently only tested on Mac OSX and Linux
- Requires Java Runtime Environment (JRE) version 8 update 40 or newer
 - Current version is 51, might need restart after update
- Requires gcc

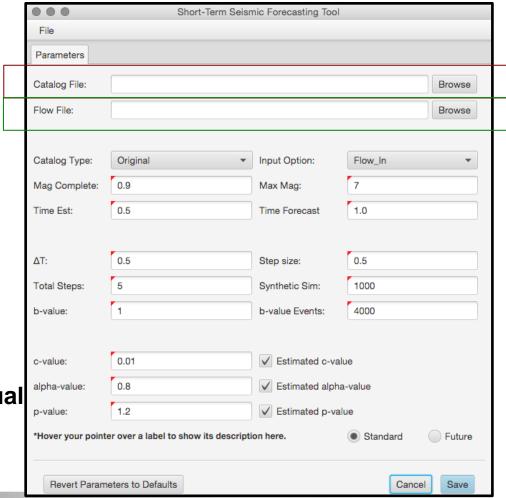

How to run the STSF Tool

To run the GUI

sh bin/application

has to be run in a shell script from the main

tool folder....



(13)

GUI- Input

- The GUI needs two files
 - Catalog Data
 - Injection Data

The format of both files is described in the User Manual

Different input parameters can be used for Fr

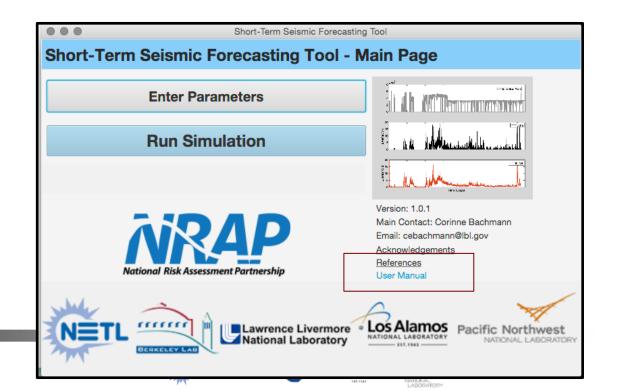
	Short-Term Seisn	nic Forecasting Tool	
File			
Parameters			
Catalog File:			DH_Flux Browse
Flow File:			Surf_Flux Browse
Flow File:			DH_P
			Surf_P
Catalog Type:	Original	Input Option:	✓ Flow_In ▼
Mag Complete:	0.9	Max Mag:	Constant
Time Est:	0.5	Time Forecast	1.0
ΔΤ:	0.5	Step size:	0.5
Total Steps:	5	Synthetic Sim:	1000
b-value:	1	b-value Events:	4000
c-value:	0.01	✓ Estimated c-va	alue
alpha-value:	0.8	✓ Estimated alph	a-value
p-value:	1.2	✓ Estimated p-va	alue
*Hover your pointer over a label to show its description here.			
Revert Parameters to Defaults Cancel Save			

DH = Downhole Surf = Surface

(Examples from a previous experiment, can be adapted)

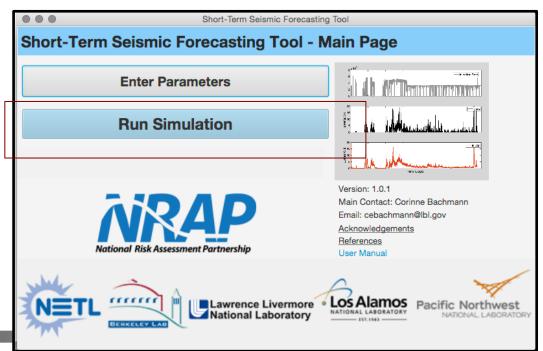
- Information about flow parameter in forecast time-bin can be included with the 'future' option
- Standard only uses past information

	Short-Te	erm Seismic Forecasting Tool	
File			
Parameters			
Catalog File:			Browse
Flow File:			Browse
Catalog Type:	Original	▼ Input Option:	Flow_In ▼
Mag Complete:	0.9	Max Mag:	7
Time Est:	0.5	Time Forecast	1.0
ΔΤ:	0.5	Step size:	0.5
Total Steps:	5	Synthetic Sim:	1000
b-value:	1	b-value Events:	4000
c-value:	0.01	Stimated c-va	ılue
alpha-value:	0.8	✓ Estimated alph	a-value
p-value:	1.2	✓ Estimated p-va	alue


Different input parameters can be varied/fixed

	Short-Term Seismic Forecasting Tool			
File				
Parameters				
Catalog File:				Browse
Flow File:				Browse
Catalog Type:	Original ▼	Input Option:	Flow_In	•
Mag Complete:	0.9	Max Mag:	7	
Time Est:	0.5	Time Forecast	1.0	
ΔΤ:	0.5	Step size:	0.5	
Total Steps:	5	Synthetic Sim:	1000	
b-value:	1	b-value Events:	4000	
c-value:	0.01	✓ Estimated c-value	ue	
alpha-value:	0.8	✓ Estimated alpha-value		
p-value:	1.2 Estimated p-value			
*Hover your pointer over a label to show its description here.				
Revert Parame	eters to Defaults		Cancel	Save

- Saving parameters returns the GUI to the start frame
- More information about parameters can be found in the User Manual



GUI- Running a simulation

- A simulation is run with the 'Run Simulation' button
- Before the first run, parameters have to be set and input files have to be chosen

GUI- Running a simulation

- A simulation run opens a shell script output
- The run is finished when the 'Return to Main Screen' button is highlighted

```
Short-Term Seismic Forecasting Tool
Fehler bei der Spalten/Zeilen-Bestimmung !!!DATA/fluxrate.dat with N=5088 events read
        integrateflux[0.5-3.5]=0.000000
1. LL=-0.000000
       0.010000
                       0.010000
                                       0.010000
                                                       1.842068
                                                                       1.200000
    gradient ***
                        -0.00e+00
                                       -0.00e+00
                                                       -0.00e+00
                                                                       -0.00e+001. LL=-0.000000
                       0.010000
                                       0.010000
                                                       1.842068
                                                                       1.200000
*** gradient ***
                                       -0.00e+00
                                                       -0.00e+00
                                                                       -0.00e+00
        -0.00e+00
                        -0.00e+00
mu=0.010000 K=0.010000 c=0.010000 alpha=0.800000 p=1.20
        Program-END
sh: line 1: 18313 Done
                                         ( echo 1; echo 7; echo 0.9; echo 3.5; echo 0.5; echo 1; echo
4000; echo 7; echo 1000 )
     18314 Segmentation fault: 11 | ./forecast fluxrate
cat: OUTPUT/forecast.out: No such file or directory
OUTPUT/parameter.out with N=1 events read
Startwerte: mu=0.010000 K=0.010000 c=0.010000 alpha=1.842068 p=1.20
DATA/cat.dat with N=5745 events read
Fehler bei der Spalten/Zeilen-Bestimmung !!!DATA/fluxrate.dat with N=5088 events read
        check-model: OUTPUT/checkmodelling.out written
                                         Return To Main Screen
```


Output files

- Output files are written in the tool folder
 - bin/OUTPUT
 - One file with calculated parameters

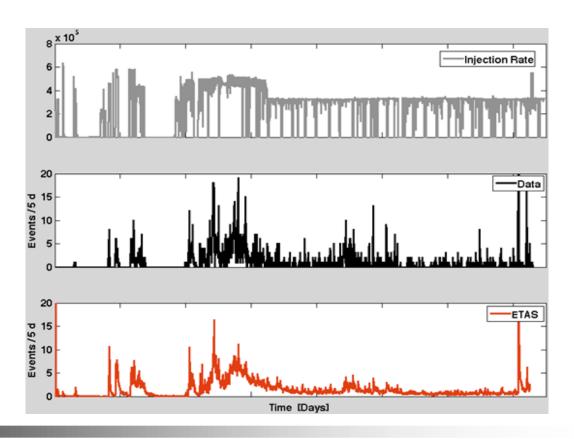
```
allparameter_fut.out
allparameter_fut.out > No Selection
                      c_[days]
                                alpha__with10^alpha*M
                                                                           AIC
                                                                maxgrad
                                    0.010000
                                                 0.800000
                                                             1.200000
                                                                          6.655767e-04
                                                                                           -39.036473
                      c_[days]
                                alpha__with10^alpha*M
                                                                           AIC
                                    0.010000
                                                0.800000
                                                                          1.479497e-03
                                                                                           -95.992653
                       0.000000
                      c_[days]
                                alpha__with10^alpha*M
                                                                           AIC
                                    0.001143
                                                 1,562404
                                                                                           -138.509686
                                                             3.441481
                                                                          2.693611e+03
```

One file with calculated rates

 From day 1 to 1.5 29.46 events above magnitude of completeness were forecast

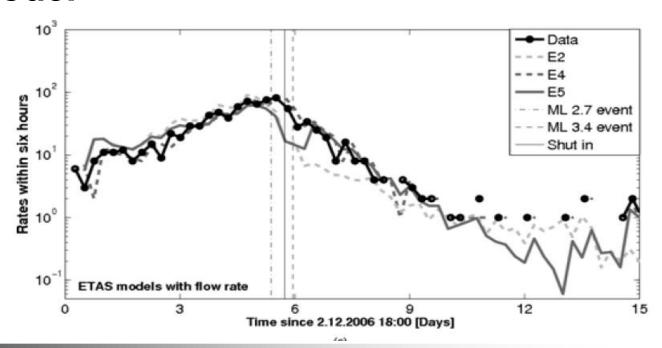
Output files

- Output files are written in the tool folder
 - bin/OUTPUT
 - The files have a standard name and will be overwritten by a new run
 - allforecast_fut.out and allparameter_fut.out
 - To save the output of one run, files have to be renamed manually
 - Possibility of determining output name files could be added in a newer version



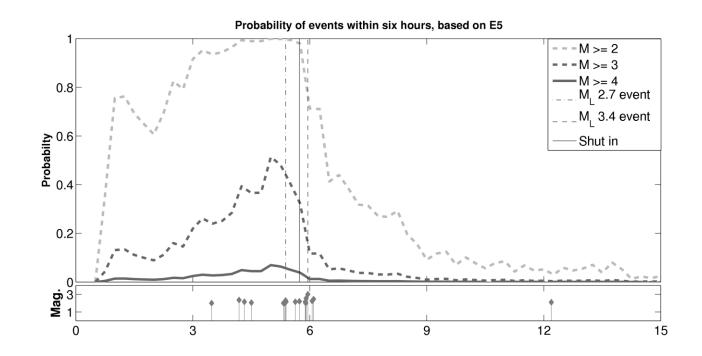
Output Examples

 Output example with event forecast in 5 day bins over a 20 year injection



Output Examples

- Output example with event forecast in 0.25 day bins for a 6 day injection
 - E2,E4 and E5 are different realizations of the model



Output Examples

 Events above a certain magnitude with time

Schedule for NRAP Tool Webinar Series

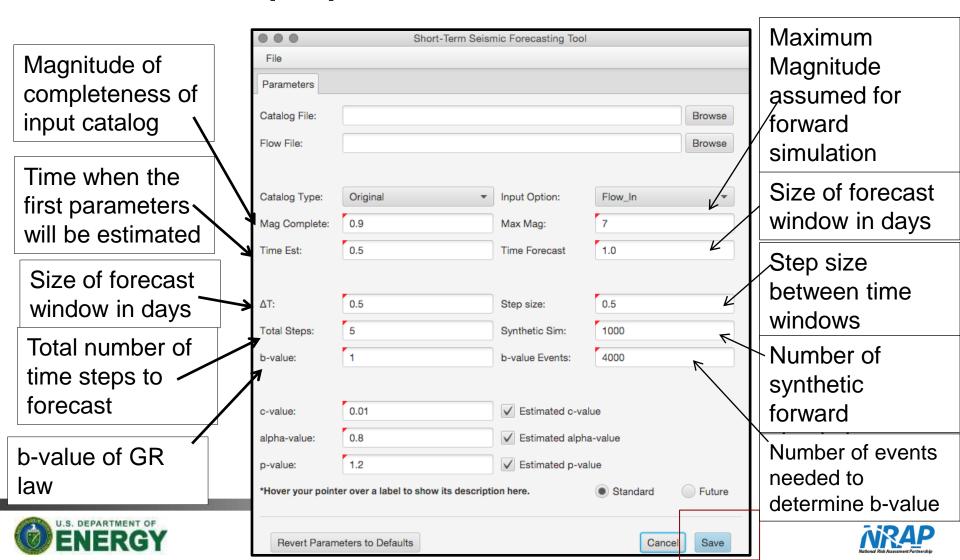
Date/ Time	Tool	Presenter(s)
October 13 Time: 1pm ET	Integrated Assessment Model–Carbon Storage (NRAP-IAM-CS) (2.5 hours)	Rajesh Pawar
October 19 Time: 1pm ET	Natural Seal ROM (NSealR) (1 hour)	Nicolas Huerta, Ernest Lindner
October 26 Time: 1pm ET	Reservoir Evaluation and Visualization (REV) Tool (1 hour)	Seth King
November 2 Time: 1pm ET	Wellbore Leakage Analysis Tool (WLAT) (1.5 hour)	Nicholas Huerta
November 9 Time: 1pm ET	Aquifer Impact Model (AIM) (1.5 hour)	Diana Bacon
November 16 Time: 1pm ET	Design for Risk Evaluation and Monitoring (DREAM) (1 hour)	Catherine Ruprecht Yonkofski
November 30 Time: 1pm ET	Short Term Seismic Forecasting (STSF) (1 hour)	Josh White, Corinne Bachmann
December 7 Time: 1pm ET	Integrated Assessment Model–Carbon Storage (NRAP-IAM-CS) and REV Tool (1.5 hours)	Rajesh Pawar, Seth King

Check for updates at www.edx.netl.doe.gov/nrap

Questions?

Seismic Short Term Forecasting (STSF) tool

Questions/comments not addressed during the scheduled meeting time can be addressed to cebachmann@lbl.gov



Different input parameters can be varied/fixed

